On Lower Bounds for the Matching Number of Subcubic Graphs
نویسندگان
چکیده
منابع مشابه
On Lower Bounds for the Matching Number of Subcubic Graphs
We give a complete description of the set of triples (α, β, γ) of real numbers with the following property. There exists a constant K such that αn3 + βn2 + γn1 − K is a lower bound for the matching number ν(G) of every connected subcubic graph G, where ni denotes the number of vertices of degree i for each i.
متن کاملSome lower bounds for the $L$-intersection number of graphs
For a set of non-negative integers~$L$, the $L$-intersection number of a graph is the smallest number~$l$ for which there is an assignment of subsets $A_v subseteq {1,dots, l}$ to vertices $v$, such that every two vertices $u,v$ are adjacent if and only if $|A_u cap A_v|in L$. The bipartite $L$-intersection number is defined similarly when the conditions are considered only for the ver...
متن کاملsome lower bounds for the $l$-intersection number of graphs
for a set of non-negative integers~$l$, the $l$-intersection number of a graph is the smallest number~$l$ for which there is an assignment of subsets $a_v subseteq {1,dots, l}$ to vertices $v$, such that every two vertices $u,v$ are adjacent if and only if $|a_u cap a_v|in l$. the bipartite $l$-intersection number is defined similarly when the conditions are considered only for the ver...
متن کاملLower bounds on the signed (total) $k$-domination number
Let $G$ be a graph with vertex set $V(G)$. For any integer $kge 1$, a signed (total) $k$-dominating functionis a function $f: V(G) rightarrow { -1, 1}$ satisfying $sum_{xin N[v]}f(x)ge k$ ($sum_{xin N(v)}f(x)ge k$)for every $vin V(G)$, where $N(v)$ is the neighborhood of $v$ and $N[v]=N(v)cup{v}$. The minimum of the values$sum_{vin V(G)}f(v)$, taken over all signed (total) $k$-dominating functi...
متن کاملLower bounds on the number of realizations of rigid graphs
In this paper we take advantage of a recently published algorithm for computing the number of realizations of minimally rigid graphs. Combining computational results with the theory of constructing new rigid graphs by gluing, we give a new lower bound on the maximal possible number of realizations for graphs with a given number of vertices. We extend these ideas to rigid frameworks in three dim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Graph Theory
سال: 2016
ISSN: 0364-9024
DOI: 10.1002/jgt.22063