On Lower Bounds for the Matching Number of Subcubic Graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Lower Bounds for the Matching Number of Subcubic Graphs

We give a complete description of the set of triples (α, β, γ) of real numbers with the following property. There exists a constant K such that αn3 + βn2 + γn1 − K is a lower bound for the matching number ν(G) of every connected subcubic graph G, where ni denotes the number of vertices of degree i for each i.

متن کامل

Some lower bounds for the $L$-intersection number of graphs

‎For a set of non-negative integers~$L$‎, ‎the $L$-intersection number of a graph is the smallest number~$l$ for which there is an assignment of subsets $A_v subseteq {1,dots‎, ‎l}$ to vertices $v$‎, ‎such that every two vertices $u,v$ are adjacent if and only if $|A_u cap A_v|in L$‎. ‎The bipartite $L$-intersection number is defined similarly when the conditions are considered only for the ver...

متن کامل

some lower bounds for the $l$-intersection number of graphs

‎for a set of non-negative integers~$l$‎, ‎the $l$-intersection number of a graph is the smallest number~$l$ for which there is an assignment of subsets $a_v subseteq {1,dots‎, ‎l}$ to vertices $v$‎, ‎such that every two vertices $u,v$ are adjacent if and only if $|a_u cap a_v|in l$‎. ‎the bipartite $l$-intersection number is defined similarly when the conditions are considered only for the ver...

متن کامل

Lower bounds on the signed (total) $k$-domination number

Let $G$ be a graph with vertex set $V(G)$. For any integer $kge 1$, a signed (total) $k$-dominating functionis a function $f: V(G) rightarrow { -1, 1}$ satisfying $sum_{xin N[v]}f(x)ge k$ ($sum_{xin N(v)}f(x)ge k$)for every $vin V(G)$, where $N(v)$ is the neighborhood of $v$ and $N[v]=N(v)cup{v}$. The minimum of the values$sum_{vin V(G)}f(v)$, taken over all signed (total) $k$-dominating functi...

متن کامل

Lower bounds on the number of realizations of rigid graphs

In this paper we take advantage of a recently published algorithm for computing the number of realizations of minimally rigid graphs. Combining computational results with the theory of constructing new rigid graphs by gluing, we give a new lower bound on the maximal possible number of realizations for graphs with a given number of vertices. We extend these ideas to rigid frameworks in three dim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Graph Theory

سال: 2016

ISSN: 0364-9024

DOI: 10.1002/jgt.22063